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Instabilities of the Stewartson layer
Part 1. The dependence on the sign of Ro

By RAINER HOLLERBACH†
Department of Aerodynamics and Fluid Mechanics, Brandenburg Technical University,

03013 Cottbus, Germany

(Received 16 August 2002 and in revised form 16 May 2003)

We consider the fluid flow in a spherical shell in rapid overall rotation, with ad-
ditionally a differential rotation imposed on the inner sphere. The basic state consists
of the axisymmetric Stewartson shear layer situated on the tangent cylinder, the
cylinder parallel to the axis of rotation and just touching the inner sphere. In this
work we consider the non-axisymmetric instabilities that arise when the differential
rotation becomes sufficiently large. We find that the sign of the differential rotation,
that is, whether the inner sphere is rotating slightly faster or slightly slower than the
outer sphere, is crucial, with positive differential rotations yielding a progression to
higher wavenumbers m as the overall rotation rate increases, but negative differential
rotations yielding m = 1 over almost the entire range of rotation rates. This difference
is particularly intriguing, as it has been seen before in one closely related experimental
study, but not in another. A prior asymptotic analysis also suggested there should
be no difference. We therefore try to understand what subtle features of the flow
structures and/or geometries should cause this difference in results. We show that the
geometry is the critical feature, with the height along the axis of rotation changing
abruptly across the tangent cylinder. We are not able to identify why this should
make such a difference, and why only for negative differential rotations. We suggest
instead additional experiments and asymptotics to further clarify this point.

1. Introduction
Among the fundamental problems in classical fluid dynamics are the possible in-

stabilities of free shear layers, with a history dating back to von Helmholtz (1868), Lord
Kelvin (1871) and Lord Rayleigh (1880), and continuing to this day (e.g. Chomaz et al.
1988; Solomon, Holloway & Swinney 1993; van de Konijnenberg et al. 1999). Such
shear flow instabilities are of interest not only from an abstract fluid-dynamical point
of view; they are also relevant in meteorology (Kuo 1973), oceanography (Talley
1983), astrophysics (Sumathi & Raghavachar 1993), and many other areas.

In this work we will consider the instabilities of the Stewartson layer, a particularly
simple shear layer that exists in rapidly rotating systems. The instabilities of this
layer have previously been studied experimentally (Hide & Titman 1967; Niino &
Misawa 1984; Früh & Read 1999), and these results are largely understood in terms
of Busse’s (1968) asymptotic analysis. There is, however, one key discrepancy between
the experiments of Hide & Titman and Früh & Read that is not explained by the
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(a) (b)

Figure 1. Sketches of the experimental setups of (a) Hide & Titman, and (b) Früh & Read.
The disks indicated in black are given a differential rotation �Ω in addition to the overall
rotation Ω . The dotted lines denote the tangent cylinder on which the basic Stewartson layer
forms.

theory. The purpose of this work is to explore the origin of this discrepancy, by
presenting a direct numerical solution of a closely related problem.

The Stewartson layer is generated by imposing a small differential rotation on
part of a system in rapid overall rotation. Figure 1 shows sketches of the two
experimental configurations adopted by Hide & Titman and Früh & Read. In both
cases a cylindrical container rapidly rotates about the vertical axis. Hide & Titman
(subsequently referred to as HT) then impose a differential rotation on a small disk
immersed in the middle of the tank; Früh & Read (subsequently referred to as FR)
impose a differential rotation on two small disks embedded in the top and bottom
boundaries of the tank. In both cases the resulting flow pattern consists primarily
of a shear layer on the tangent cylinder, the cylinder circumscribing the disk(s) and
parallel to the axis of rotation. Outside the tangent cylinder the fluid rotates at a rate
Ω , the overall rotation of the container; inside the tangent cylinder it rotates at a rate
Ω + �Ω/2 in the HT setup and Ω + �Ω in the FR setup, where in both cases �Ω

is the differential rotation of the disk(s). (That is, the fluid everywhere rotates at a
rate intermediate between its upper and lower boundaries.) The detailed structure of
the shear layer which then resolves this jump in angular velocity across the tangent
cylinder was derived by Stewartson (1957), and consists of two nested layers of outer
thickness E1/4 and inner thickness E1/3, where the Ekman number E is an inverse
measure of the overall rotation rate Ω .

Stewartson’s analysis only applies in the limit of infinitesimally small �Ω , in which
inertia can be neglected by linearizing about U = 0 (in the rotating system). However,
for increasingly large �Ω , for which inertia can no longer be neglected, it seems
likely that eventually some sort of instability will set in, and indeed that is what the
experiments reveal. For sufficiently large �Ω the initially axisymmetric Stewartson
layer becomes unstable, and adopts a wavy, non-axisymmetric structure instead.

Although the experiments thus agree that instabilities will eventually set in, they
disagree on quite fundamental aspects of these instabilities. In particular, FR find
that the sign of �Ω , that is, whether their two disks are rotating slightly faster or
slower than the tank, makes virtually no difference for |�Ω/Ω | as large as ∼ 0.5; in
both cases the azimuthal wavenumber of the most unstable non-axisymmetric mode
gradually increases with decreasing Ekman number. (As one might expect, since the
preferred azimuthal lengthscale of the instability might be expected to become shorter
and shorter as the radial lengthscale of the underlying shear layer becomes shorter and
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shorter.) In contrast, HT find that this sign is crucial, with the azimuthal wavenumber
increasing if their one disk is rotating slightly faster, but remaining constant at m =1
if it is rotating slightly slower. (Niino & Misawa only considered the case of positive
�Ω , so their results are less relevant in this context.)

This discrepancy between HT and FR in the case of negative �Ω is particularly
intriguing as Busse (1968) had predicted there should be no difference between
positive and negative �Ω (by reducing the governing equations to a barotropic,
quasi-geostrophic form in which the sign of �Ω does not enter at all). There must
thus be some subtle difference in the geometries or flow patterns between figures 1(a)
and 1(b), which makes Busse’s analysis more applicable to 1(b) than to 1(a). There
are a number of obvious differences between 1(a) and 1(b) (which we will consider
in detail below), but it is not immediately obvious which of these should matter and
why, and why only for negative �Ω . Until we can answer these questions, we cannot
say that we fully understand the results of either HT or FR.

In an attempt to address at least some of these questions I here present a direct
numerical solution of a closely related problem, namely the instabilities of the
Stewartson layer in spherical rather than cylindrical geometry. If one considers a
rapidly rotating spherical shell, and imposes a small differential rotation on the inner
sphere, a Stewartson layer will again be induced on the tangent cylinder. The detailed
structure of this layer was obtained by Stewartson (1966), and is almost identical
to the previous structure, again consisting of nested layers of outer thickness E1/4

and inner thickness E1/3, but now also containing an intermediate thickness E2/7.
The Stewartson layer in spherical geometry has also been reproduced numerically by
Hollerbach (1994) down to E = 10−5, and by Dormy, Cardin & Jault (1998) down to
E = 10−7, with good agreement with the asymptotic analysis in both cases.

Given that the Stewartson layers in spherical and cylindrical geometries are so
similar, one might expect that the two problems would also give rise to similar
instabilities. This is indeed the case; the instabilities we obtain here are almost
identical to the HT ones, and in particular exhibit the same difference between
positive and negative �Ω . We therefore conduct various numerical experiments to
elucidate the origin of this difference. We show that it is due to the variation in height
of fluid columns parallel to the axis of rotation, with this height changing abruptly
across the tangent cylinder both here and in figure 1(a), but not in 1(b). We are not
able definitely to identify why this should make such a difference, and why only for
negative �Ω . Instead, we suggest further experiments in which this geometrical effect
is more systematically studied, as well as further asymptotics of some of these new
configurations.

2. Equations
Scaling length by the gap width (ro − ri), time by the inverse rotation rate Ω−1, and

U by �Ω (ro − ri), the Navier-Stokes equation in the rotating frame becomes

∂U
∂t

+ Ro U · ∇U + 2êz × U = −∇p + E∇2U, (1)

where the Ekman number

E ≡ ν

Ω(ro − ri)2
(2)

is thus an inverse measure of the overall rotation rate Ω , and the Rossby number

Ro ≡ �Ω/Ω (3)
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(a)

(b)

Figure 2. (a) Contours of the angular velocity, with a contour interval of 0.1. (b) Streamlines
of the associated meridional circulation, with a contour interval of 2 × 10−4. From left to right
Ro= 0, 0.5 and −0.5, and E = 10−4. The angular velocity is symmetric about the equator,
the meridional circulation anti-symmetric (that is, counter-clockwise in the upper hemisphere,
clockwise in the lower). Finally, the dotted line in the left panel of (a) indicates the plane z =1;
in figure 3 we show profiles of the angular velocity as a function of the cylindrical radius along
this line.

is the relative differential rotation rate. In the experiments E typically ranges between
10−2 and 10−5, and |Ro| between 0 and O(1). Very conveniently this is also the range
that is numerically accessible. The boundary conditions associated with (1) are

U = r sin θ êφ at r = ri,

U = 0 at r = ro,

}
(4)

where we fix the inner and outer radii at ri =1/2 and ro = 3/2.
The numerical code we use to solve these equations (along with the incompressibility

condition ∇ · U =0) is described by Hollerbach (2000). Two slightly different versions
of this code were used. We begin by considering purely axisymmetric solutions,
thereby computing the basic states whose instabilities we want to consider. These
results are presented in the next section. In §§ 4 and 5 we then linearize about these
basic states and compute the stability of single non-axisymmetric modes at a time.

3. Axisymmetric solutions
Figure 2 shows the equilibrated, steady-state solutions at E = 10−4 and Ro = 0, 0.5

and −0.5. The shear layer on the tangent cylinder is clearly visible, with the fluid at
rest outside, and rotating at a rate intermediate between the inner and outer spheres
inside. The Ekman layers of thickness E1/2 at the inner and outer boundaries are also
visible. A slight thickening of the inner Ekman layers toward the equator can just be
seen, where the E1/2 scaling breaks down entirely, and is replaced by an E2/5 scaling
(Stewartson 1966, see also Hollerbach 1994 and Dormy et al. 1998).

In addition to these various structures shown by the angular velocity, there is also
a secondary meridional circulation, consisting of a flow from the outer to the inner
Ekman layer inside the tangent cylinder, with the return flow in a narrow jet on the
tangent cylinder. This flow is very weak compared with the azimuthal shear, only
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Figure 3. The angular velocity ω as a function of the cylindrical radius s, at z = 1 for (a)
E = 10−3.5, (b) E = 10−4, (c) E = 10−4.5. In addition to Ro= 0, indicated by the solid line, in
(a) Ro= ±0.7 is shown, in (b) Ro= ±0.5 and in (c) Ro= ±0.3. Positive Ro are shown dotted,
negative dashed.

O(E1/2). (Incidentally, we note also that with our scaling for U , the dimensional
and non-dimensional flows are in opposite directions for �Ω < 0. That is, while
the non-dimensional circulation shown here is counter-clockwise for all Ro, the real,
dimensional circulation would be clockwise for Ro < 0.)

Turning to the Ro-dependence, we note that there is remarkably little; the solutions
for Ro = ±0.5 — already a substantial differential rotation — look very similar to
the solution for Ro = 0, corresponding to an infinitesimal differential rotation (the
limit considered by Stewartson, Hollerbach 1994 and Dormy et al. 1998). For even
larger positive Ro the solutions do change significantly, with purely axisymmetric
instabilities developing, and the solutions becoming time-dependent. Since we will
find in the next section that Ro = 0.5 is already unstable to non-axisymmetric
instabilities, the existence of these axisymmetric instabilities is of little interest. In
the parameter ranges of interest the basic states always remained steady-state. They
also remained equatorially symmetric, as indicated in figure 2. Perturbations of the
opposite symmetry were introduced, but decayed away in every case. Finally, figure 3
shows detailed profiles of ω(s) across the layer. We see both how it becomes thinner
and thinner for increasingly small E, and the comparatively minor effect that
variations in Ro have.

4. Non-axisymmetric instabilities
Having obtained these axisymmetric basic states U0, we next linearize (1) about

them to obtain

∂u
∂t

+ Ro (u · ∇U0 + U0 · ∇u) + 2êz × u = −∇p + E∇2u. (5)

We can therefore test the stability of U0 by time-stepping (5) (with homogeneous
boundary conditions) until the dominant eigenmode emerges, and seeing whether it
grows or decays. Conveniently, the problem continues to be two-dimensional, even
though it is no longer axisymmetric, since the different non-axisymmetric modes
decouple, and can therefore be tested separately. Because of the equatorial symmetry
shown in figure 2, each m further decouples into two distinct symmetry classes that
can again be tested separately. It was found though that only modes having the same
symmetry as the basic state became unstable.

The procedure is therefore as follows. Fix E and Ro, and compute the axisymmetric
basic state according to (1). Then time-step (5) for a given m (and symmetry class)
until the dominant eigenmode emerges. If it grows/decays, decrease/increase Ro and
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Figure 4. Roc versus E, for the different azimuthal wavenumbers indicated. Modes not shown
(m= 1 and 2 for Ro> 0 and m> 2 for Ro< 0) may still be unstable, but are not the most
unstable modes for any values of E.

repeat the whole procedure (including the calculation of U0) until one obtains Roc, the
critical Rossby number where the instability just sets in. By repeating this procedure
in turn for a range of Ekman numbers, one can map out Roc as a function of E, for
any given value of m.

Figure 4 shows these results, for positive and negative Ro. The similarity with HT
is striking; we also find that for positive Ro the most unstable azimuthal wavenumber
increases with decreasing E, whereas for negative Ro it remains constant at m = 1
over almost the entire range of E. For both positive and negative values Roc decreases
with decreasing E (although it is perhaps worth noting that it decreases sufficiently
slowly that the absolute, dimensional differential rotation �Ωc increases). This also
is in agreement both with the experiments and with Busse’s asymptotics; HT obtain
Roc ∝ E0.6 (for both signs of Ro, curiously), FR obtain Roc ∝ E0.72 (again for both
signs of Ro), Busse predicts Roc ∝ E0.75, and we here obtain E0.65 for positive Ro, and
E0.45 for negative Ro.

5. Why are sgn(Ro) = ±1 different?
Having obtained the same difference between positive and negative Ro as HT, we

now consider its origin. First we should note that there is no a priori reason why
the two cases should not be different; they are physically distinct states. Without the
results of Busse and FR, therefore, we might accept that different states simply have
different instabilities as well. Given their results though, we would like to understand
why ±Ro are different in figure 1(a) and here, but not in figure 1(b) and Busse’s
asymptotics.

5.1. Testing aspects of U0

There are three aspects of U0 that we can test (and in the end eliminate) as possible
causes of this difference. The first is that the nonlinearity in U0, that is, its dependence
on Ro, is the cause. Given how weak this dependence is, it seems unlikely, but we
can verify it easily by conducting the following numerical experiment: for U0 in (5),
always use the Ro = 0 basic state. That is, adjust Ro in (5), but fix it at zero in (1).
Doing this, we obtain instability curves very similar to those in figure 4, proving that
the nonlinearity in U0 has virtually no effect, and is certainly not the cause of the
difference between positive and negative Ro.

The next aspect of U0 we consider is the meridional circulation. Given how weak
this is, it again seems implausible that this would have any significant effect, but we
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(a)

(b)

Figure 5. (a) Contours of the angular velocity, for Ro= 0 and, from left to right, E = 10−3.5,
10−4 and 10−4.5; (b) shows how the Ekman layers have been removed, by extending to all z the
previous profiles at z = 1. These are thus the basic states used in the computation of figure 6.
The contour interval is 1/15 throughout.

can again verify this, by conducting a similar experiment, in which we simply delete
the meridional circulation from U0 in (5) (And of course, having just verified that
the slight Ro-dependence of the basic state does not make a difference, we could save
time by always using the Ro = 0 basic states here as well.) Once again, we obtain
instability curves very similar to those in figure 4.

The last aspect of U0 that we consider are the Ekman layers at the inner and
outer boundaries in figure 2. We explore here whether the instabilities we see really
are instabilities of the Stewartson layer, and not of the Ekman layers: after all, the
jump in angular velocity across the Ekman layers is exactly the same as across the
Stewartson layer, and they are even thinner, so the shear is greater. It is thus not
obvious that the Stewartson layer will nevertheless become unstable first.

Returning to figure 1, we recall also that inside the tangent cylinder the angular
velocity is Ω + �Ω/2 in figure 1(a), but Ω +�Ω in 1(b). That is, figure 1(a) will
have Ekman layers just like those here, whereas 1(b) will not. Furthermore, Busse did
not include Ekman layers in the basic state whose stability he studied, but simply
prescribed a shear profile without any z-dependence. That is, if these anomalous
negative-Ro instabilities turned out to be instabilities of the Ekman layers rather
than the Stewartson layer, that would certainly be consistent between the four sets
of results: in HT and here there are both Ekman layers and anomalous negative-Ro
instabilities, whereas in FR and Busse there are neither.

It is thus clear that of our three numerical experiments on U0, testing the influence
of the Ekman layers is the most important. We therefore conduct an experiment
similar to the above two, namely to delete the Ekman layers as well from U0

in (5). This is a little more involved than deleting the meridional circulation, but
is ultimately still quite straightforward, with figure 5 showing the result. Figure 6
then shows the resulting instability curves, which we note are still much the same
as in figure 4. Though plausible, this correlation between Ekman layers and these
anomalous instabilities is not the explanation.
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Figure 6. Roc versus E, for the different azimuthal wavenumbers indicated, with the non-
linearity, meridional circulation and Ekman layers all deleted in U0. The significance of the
dotted lines will be explained in § 5.3.

(a)

(b)

Figure 7. (a) How the shear profiles from figure 5 are extended into a full sphere, (b) how
they are restricted to a shell with ri = 0.8 (rather than the original 0.5).

5.2. Influence of the geometry

At this point the only remaining part of U0 is the z-independent shear shown in
figure 5, and yet we still obtain this difference between positive and negative Ro,
whereas – with virtually the same basic state – Busse and FR do not. We conclude
therefore that the critical difference between figures 1(a) and 1(b) lies in the geometry
itself, rather than in the resulting flows. Fortunately, we can vary the geometry as
well, as shown in figure 7, in which the profiles in figure 5 are either extended into a
full sphere, or restricted to a thinner shell than before. (Note also that even though
these various checks on U0 all turned out negative, it was nevertheless important to
do them first, as it would have been rather more difficult to extend the original U0

into a different geometry. Extending a z-independent basic state is trivial though.)
Figure 8 shows the resulting instability curves, which are (finally) different from

figure 4. In both the full sphere and thin shell geometries, positive and negative
Ro are much the same, with both now exhibiting a progression to higher and higher
wavenumbers, as found by Busse and FR. In all four cases we also find that Roc ∝ E0.7,
that is, in better agreement with FR and Busse than in figure 4.
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Figure 8. Roc versus E, for the different azimuthal wavenumbers indicated, with the (a, b)
corresponding to the geometries and basic states shown in (a) and (b) of figure 7.

Having demonstrated that the geometry is the crucial factor, we now consider
precisely what aspect of it causes the difference, and why. We begin by introducing
the height along the z-axis, h, as a function of the cylindrical radius s. In the full
sphere this height decreases on moving outward across the shear layer, whereas in
the thin shell it increases. In contrast, in the original ri = 0.5 shell it decreases in
both directions away from the tangent cylinder, with h′ → ∞ just inside the tangent
cylinder, due to the slope of the inner sphere becoming vertical there.

Turning next to HT, FR, and Busse, we note that HT also change h discontinuously
across the tangent cylinder, due to the finite thickness of the disk (12.5 mm, compared
to an Ekman layer thickness of 1–3 mm). In contrast, FR do not change h, and Busse
also considered primarily this case. This leaves only the two cases in figures 7 and
8, where h′ is either uniformly positive or uniformly negative across the shear layer.
Busse considered these cases as well, and again concluded that the sign of Ro should
not matter, in perfect agreement with what we obtain here.

The conclusion therefore seems quite clear: if h does not change, or changes
gradually, then positive and negative Ro will be much the same, whereas if it changes
abruptly, then negative Ro will be anomalous. We now consider various diagnostic
quantities that might help in understanding why that is the case.

5.3. Diagnostics

First we consider the so-called potential vorticity

PV=
2 + Ro(∇ × U0)z

h(s)
, (6)

consisting of the total vorticity, including that due to the background rotation, divided
by the height h(s). The reason potential vorticity might be important is that for almost
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z-independent flows such as here, it is conserved on fluid columns (in the inviscid limit,
at least). See, for example, Salmon (1998) for this result (which corresponds physically
to conservation of local angular momentum). If PV is to be conserved on fluid
columns, a necessary condition for instability is presumably that PV ′ = 0 (assuming
the instability involves fluid columns moving in and out in s, as non-axisymmetric in-
stabilities necessarily do). With such an instability criterion, it is then not difficult to
see why variations in h would matter, or why positive and negative Ro might be quite
different. See, for example, Li & McClimans (2000) or Burns, Maslowe & Brown
(2002) for two such stability calculations.

We should caution, though, that PV is an essentially inviscid concept, and therefore
may not be directly applicable to a problem such as that considered here, where
viscosity (in the form of the Ekman number) plays an essential role. For example,
if h is constant, PV ′ = 0 when Ro =0, which is indeed the correct E = 0 limit of
FR and Busse’s results, but is still not helpful in understanding the finite E results.
Nevertheless, given how ubiquitous PV is in the geophysical fluid dynamics literature,
and how it can explain ±Ro asymmetries in certain problems, it is worth considering
if it can be correlated at least qualitatively with some of the results.

The dotted lines in figures 6 and 8 show the critical Rossby numbers at which
the potential vorticity gradient first becomes 0 at some point, given the U0 profile at
that Ekman number (and of course with h(s) as appropriate for the given geometry).
Turning to the simpler geometries in figure 8 first, we find that the results are certainly
suggestive, with these critical Rossby numbers following much the same E0.7 scaling as
the critical Rossby numbers for the onset of instability. Indeed, this PV ′ = 0 criterion
might even explain much of the variation in the overall level of the instability curves,
that is, the constant multiplying the E0.7. For h′Ro > 0 the instabilities consistently
appear to set in at twice the PV ′ = 0 value; for h′Ro < 0 at three to four times.

Turning to the original figure 6 geometry, Ro < 0 is once again anomalous, in the
sense that it is the only case where the slopes of the PV ′ = 0 and instability curves are
quite different, suggesting that perhaps PV plays a role in all the other instabilities,
but not in these. However, this conclusion is rather tentative at best; it would have
been less so if, for example, the PV ′ =0 curve had been above the instability curves
in this one case. As it is, these potential vorticity diagnostics are inconclusive so far.

We therefore turn to our next set of diagnostics, the spatial structure of the
instabilities, and where they extract their energy from the basic state, which apart
from their intrinsic interest, could cast further light on the question of whether PV

is relevant or not, since, if it is, the instabilities might be expected to be concentrated
where PV ′ is small.

We begin by deriving the energy equation associated with (5). Taking the dot
product of it with u and integrating over the shell, one obtains after a little algebra

∂

∂t

∫
1
2

u2 dV = Ro

∫
U0 · ((∇ × u) × u) dV − E

∫
|∇ × u|2 dV. (7)

All other terms, such as −u · ∇p, yield zero when integrated over the shell. That is,
they may rearrange the energy, but neither create nor destroy it. There are a number
of uses to which we may put (7). At Roc the two terms on the right must exactly
balance one another (since then the instability is neither growing nor decaying), which
they do, to within better than 1% (the same accuracy to which Roc was computed),
thereby providing a reassuring check of the numerical implementation and resolution.

Beyond this global energy balance, however, it is useful to look at the detailed
spatial structures of some of the terms in (7), for example Ro U0 · [(∇ × u) × u] as a
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Figure 9. The three quantities PV , F (s) and f (s). Positive Ro for the top row, negative for
the bottom. The solid lines in each panel are at E = 10−5, the dashed lines at E = 10−4. Finally,
the dotted lines in the PV plots show the purely geometrical quantity 2/h(s) – from which
one may deduce that this figure corresponds to the full sphere geometry.

function of (s, φ, z). The φ-dependence cannot be too complicated, since u consists
of a single exp(imφ) mode. The z-dependence is similarly straightforward; like U0, u
turns out to be largely independent of z. We therefore focus on the s-dependence by
defining

F (s) = Ro

∫ ∫
U0 · ((∇ × u) × u) s dφ dz (8)

(that is, we include all of dV except the integration over s). We similarly define

f (s) =

∫ ∫
1
2

u2 s dφ dz (9)

to study the localization in s of u. (In both (8) and (9) u is normalized such that the
total energy is unity, that is,

∫
f (s) ds = 1.)

Figures 9–11 then show some of these diagnostics, for the three geometries ri = 0, 0.8
and the original 0.5, and for positive and negative Ro in each case. Again considering
the simpler geometries first, we note in figures 9 and 10 that – as expected –
F (s) is strongly concentrated on the shear layer at s = 0.5, and becomes increasingly
concentrated as E is reduced. However, there is no tendency for the peak in F to
coincide with regions of particularly small PV ′ (which would have meant slightly
displacing F from s =0.5). Similarly, f (s) also peaks at s = 0.5, but again with no
correlation with PV ′. The other interesting point to note about f is how the Ro > 0
case in figure 9 and the Ro < 0 case in figure 10 both extend far beyond s = 0.5. That
is, what little difference there is between positive and negative Ro is again correlated
with the sign of h′, just as in figure 8. (In the bottom right panel in figure 10 one can
also note the influence of the new tangent cylinder at ri = 0.8; the eigenmodes extend
out to there, but then drop off very abruptly.)

Turning next to the original geometry, we note in figure 11 that yet again Ro < 0 is
anomalous. For Ro > 0 functions F and f appear similar to some of the results in the
simpler geometries. The potential vorticity is of course somewhat more complicated,
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Figure 10. As in figure 9, but now for the ri = 0.8 thin shell geometry.
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Figure 11. As in figure 9, but now for the original ri = 0.5 geometry.

due to the presence of the vertical tangent as s → 0.5 from below. Nevertheless, it is
not very different from some of the earlier results; in particular, PV ′ is also negative
just outside s = 0.5, resulting in a reasonably smooth curve. In contrast, for Ro < 0
all three panels look quite different from any of the other results; F and especially f

both appear to have split into two distinct peaks, and PV exhibits a very sharp cusp
at s = 0.5. It is tempting therefore to ascribe the origin of these anomalous negative
Ro results to the presence of this cusp, but there is no rigorous justification.

Finally, we note also that in changing from E = 10−4 to 10−5 in figures 9–11, the
most unstable mode changes in all but the bottom row in figure 11 (see figures 6 and 8).
However, the s-dependence is unaffected, merely more concentrated exactly as one
would expect, but otherwise much the same even for different m.



Instabilities of the Stewartson layer. Part 1 301

6. Conclusion
In this work we have considered the instabilities of the Stewartson layer, and in

particular their sgn(Ro) dependence. By conducting various numerical experiments
we showed that this dependence is determined by the way in which the height h(s)
varies across the shear layer. If h does not change, or changes smoothly, then positive
and negative Ro will be much the same, whereas if it changes abruptly ±Ro will be
very different. This result that h′ is the crucial factor then strongly suggests that PV is
the underlying dynamically significant quantity. Unfortunately, the various potential
vorticity diagnostics were perhaps suggestive, but ultimately inconclusive.

Additional experiments (real, not numerical) might help to further illuminate this
problem, and the role that potential vorticity may play in it. First, HT’s experiment
should be repeated with disks of varying thickness, to study more systematically the
effect that the resulting jump in h has. Next, one could add offsets to the top and
bottom boundaries (in either the HT or FR setups) in such a way that h suddenly
decreases rather than increases. Would Ro > 0 then be the anomalous case?

Another interesting possibility would be to adjust the boundaries in such a way
that h itself does not change abruptly, but h′ does, discontinuously switching from
positive inside the tangent cylinder to negative outside. Would that be enough to
make Ro < 0 anomalous, or is an abrupt change in h itself (that is, h′ → ∞) required?
(This is something that we are not able to test here; by adjusting the geometry to
remove the h′ → ∞ singularity, we automatically also ensure that it will be continuous,
and of the same sign across the whole shear layer.) And if this experiment did yield
anomalous results for Ro < 0, would discontinuously switching h′ from negative inside
to positive outside yield anomalous results for Ro > 0?

In parallel with these various experiments, the asymptotic analysis could be extended
to some of them. Incorporating abrupt changes in h itself might prove rather difficult,
but extending Busse’s analysis to allow for an abrupt change in the sign of h′ might
be helpful, certainly if the experiments do yield anomalous results in these cases.

Another problem where an asymptotic analysis might prove revealing is a closely
related magnetic one, in which a layer much like the Stewartson layer is generated
by imposing a magnetic field rather than an overall rotation. The instabilities of this
so-called parallel layer were obtained numerically by Hollerbach & Skinner (2001),
and found to be very similar to the Ro > 0 results here. This similarity between the
two problems, in terms of both the basic states and the instabilities, is reason enough
to consider them side by side, but there is also one crucial difference between the
two, namely that whereas here the sign of the differential rotation matters, in the
magnetic problem the sign of the inner sphere’s rotation (the only rotation present in
that problem) does not. The magnetic problem contains an additional symmetry not
present in (1), which ensures that the relative orientations of the magnetic field and
the rotation do not enter.

Finally, returning to the Stewartson layer problem considered here, one might ask
what happens to these instabilities in the supercritical regime. At what levels do they
equilibrate, and how do they react back on the basic state? These issues will be
addressed in a future paper, in which we will also make a direct comparison with
experimental results (although at ri/ro = 2/3 rather than 1/3, to match the Egbers &
Rath (1995) apparatus).

I thank Bill Young for pointing out how to test the influence of geometry in § 5.2,
and an anonymous referee for emphasizing the importance of potential vorticity. I
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also thank the Alexander von Humboldt Foundation for supporting my sabbatical in
Germany.
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